
if ._j ___ N95- 19004

1994
)

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

EVALUATION OF THE EFFICIENCY AND RELIABILITY OF

SOFTWARE GENERATED BY CODE GENERATORS

Prepared By:

Academic Rank:

Institution and Department:

Barbara Schreur, Ph.D.

Associate Professor

Texas A&M University - KingsviUe

Department of Electrical Engineering and

Computer Science

NASA/MSFC:

Laboratory:
Division:
Branch:

Astrionics

Software

Systems Engineering

MSFC Colleague: Kenneth S. Williamson

XXXVI/

Introduction

Traditional software development follows a cycle wherein the project phases of

requirements definition, analysis, design, system construction and system testing are
performed sequentially, in software engineering, as in manufacturing, the end product
is improved when there is overlap between the phases. This is because feedback from

those executing later phases may improve the work of those executing earlier phases.
Thus leading to a more coherent finished product. CASE Tools which automate the

entire software development cycle encourage the team engineering approach since all
that is necessary is that developing files be shared among the various groups.

There are numerous studies, [1, 2]which show that CASE Tools greatly facilitate

software development. As a result of these advantages, an increasing amount of
software development is done with CASE Tools. As more software engineers become

proficient with these tools, their experience and feedback lead to further development
with the tools themselves. In fact, new versions of software development programs

appear with a similar frequency to those of operating systems and office application
software.

What has not been widely studied, however, is the reliability and efficiency of the
actual code produced by the CASE Tools. This investigation considers these matters.

Method

Three segments of code generated by MATRiXx ,one of many commercially
available CASE Tools, where chosen for analysis. ETOFLIGHT is a portion of the
Earth to Orbit Flight software and ECLSS and PFMC are modules for Environmental

Control and Life Support System and, Pump Fan Motor Control, respectively.The
selection criteria [3] where that:

1. the segments be produced using a code generator,

2. the language available be the C language, and
3. there be no more than 2000 lines of code,.

The original code for ETOFLIGHT was produced in the C language while ECLSS and
PFMC where in ADA. MATRIX X was used to regenerate the ECLSS and PFMC code

in C from the design diagrams. That this was readily done without code conversion
illustrates one of the advantages of CASE Tools. To be honest, the procedure did
require a service call to Matrix X as well as considerable transfer of files over the

network, but that is simply part of the learning curve.

The software was analyzed with the aid of the McCabe Tool, a commercially
available software package. This software preprocesses the code and provides the
following:

XXXVII-1

. a graphical representation of the relationships between the various modules of
the program.

The graphical representation, the Battlemap, shows the relationship between
the modules and gives the cyclomatic, v(g), and essential complexities, ev(g).
The cyclomatic complexity measures a model's decision structure while the

essential complexity is a measure of the unstructured elements of the module,
eg. a jump out of a loop.

2. flow charts of each of the coded modules.

The flow charts for each coded module also contain a code by which the
corresponding section of code can be identified. Each module contains three

flow charts. ! primarily used the cyciomatic and essential complexity charts.

3. several metrics for each module.

The metrics [4,5] that I obtained from the tool where

a) v(g) numerically,
b) ev(g) numerically,
c) the number of lines of code,
d) the number of branches in the code,

e) the number of lines containing code, comments, or code and comments, and
f) Halstead metrics consisting of

ii)
iii)
iv)
v)

vi)
vii)
viii)

program length - the number of occurrence of operators and operands
program difficulty - a measure of how hard it is to follow the code
error estimate - an estimate of the number of errors in the code

program volume - minimum number of bits required
intelligent content - a complexity based on the algorithm used without
language dependence
programming time - estimate of the time needed to produce code
program level - how difficult it is to understand the code

programming effort - an estimate of the effort necessary to produce the
code

Observations

Before utilizing the McCabe Tool, the C code was examined manually. Three points
became apparent. First, a switch statement with one choice was generated where one
would normally expect a simple if statement.

2117

2118 C99 switch(ITSK){

XXXVII-2

2119 C100 ease 1 : SUBSYSTEM010;break;

2120 C101 default : break;

2121 ClO2 }
2122

The relative efficiency of switch versus if statements is compiler dependent but the

CASE Tools make the decision for you. Thus it does not optimize for efficiency.

Secondly, Matrix X terminated the last case in a nested switch structure without a

break, relying on a fall through to the terminating break of the switch structures.

Standard practice is to terminate every case with a break unless a fall through is

explicitly desired. Modification of the program by adding a new choice to the switch

structure could lead to an unexpected fall through. This would not be a problem if the

program where regenerated by the CASE Tool but extreme care would have to be

taken with manual change to the C code.

1929 C8
1930

switch(TASK_STATE[NTSK]){
case IDLE :

1932 C9

1933

1934 C10
1935 Cll

switch(TCB[NTSK] .TASK_TYPE){
case PERIODIC :

if(TCB[NTSK].START = -- O){
READY COUNT + +;

1938
1939

1940

1941
1943

C12
C13

}else{
TCB[NTSK].START = TCB[NTSK].START - 1 ;

}
break;

case ENABLED_PERIODIC :

1977

1978 C31
1979 C32

case TRIGGERED SAF :

if(TCB[NTSK].OUTPUT = = 0){

BUS_OFFSET[NTSK] = 15 - BUS_OFFSET[NTSK];

ml=

1985 }
1986 C35 }

1987 C36C37 }
1988 bma_

1990 case RUNNING :

Lastly, in one module, 1 was the condition in five if statements as shown by the

example below.

3877 H29

3878 H30

3879

3880

3881 H31

3882

3883 }I32

if(l){
f?rJmf(fp, "TTIME %5]d%5]d%5d% 1 ls_",

YCOUNT-1 +IUCNT, ICOL, IlMG, "(1P3E25.17)");

}else{

fprintf(fp, "YTIME %51d%51d%5d% 10skn",

YCOUNT-1 +IUCNT, ICOL, IIMG, "(1PSE15.7)");

}

XXXVII-3

For efficiency, these sections of code should be reduced to the statements contained in

the true branch, thus reducing the complexity and testing procedures.

An analysis of the flow charts generated by the McCabe Tool showed that three of
the subroutines in the one program are identical except for variables used and the
order in which some statements are executed. A single subroutine could have been
used in their place. This approach, using global parameters, may execute faster than
using a single subroutine with passed parameters but the single subroutine makes
more efficient use of memory. This is a choice which should be made in the analysis
and design phases but the subroutine repetition may well be inadvertent. Future
versions of CASE Tools might point out such instances.

Of the two McCabe metrics considered, the cyclomatic complexity gives a good
indication of the complexity of a module. The essential complexity is in some cases
higher than necessary. In those modules that contain return statements in the middle
of a structure, the code cannot be represented as fully structured statements since this
represents a jump outside a structure. The essential complexity can be reduced if this

jump is performed at a later time. This increases the overall complexity of the program.
Statements, such as returns, should be represented by a symbol and not add to the
essential complexity of structured programs.

All eight of the calculated Haistead metrics are strongly correlated. Thus, there is
no reason to calculate all eight.

Conclusion

The code produced by the code generator was more uniform over the three
modules than that that would be produced by hand. The efficiency, though, would
benefit from hand optimization.

Future Work

Comparison of machine generated code and manually generated code.

Compare to code produced by the next version of the code generator
Determine if compiler dependence for the most commonly used structure types.

XJOC_I-4

References

1. Weitz, Lori, "Code Generators Gain Versatility", Software, vol. 12, no. 11, August
1992, pp. 38-44.

2. Keyes, Jessica, "Team Tools Targeting Development Process", Software, vol. 12,
no. 15, November 1992, pp. 45-56.

3. Schreur, Barbara, "Evaluation of the Efficiency and Fault Density of Software
Generated by Code Generators", NASA CR-193862, November 1993, pp. XL-XL3.

4. McCabe, Thomas, "A Complexity Measure", IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, December 1976, pp 308-320..

5 .Hatstead, Maurice, "Elements of Software Science", Elsevier, New York, 1977.

6. Keyes, Jessica, "Gather a Baseline to Access Case Impact", Software, vol. 10,
no. 10, August 1990, pp. 30-43.

